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Vesicles in solutions of hard rods

B. Groh
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 19 November 1998!

The surface free energy of ideal hard rods near curved hard surfaces is determined to second order in
curvature for surfaces of general shapes. In accordance with previous results for spherical and cylindrical
surfaces it is found that this quantity is nonanalytical when one of the principal curvatures changes signs. This
prohibits writing it in the common Helfrich form. It is shown that the nonanalytical terms are the same for any
aspect ratio of the rods. These results are used to find the equilibrium shape of vesicles immersed in solutions
of rodlike ~colloidal! particles. The presence of the particles induces a change in the equilibrium shape and a
shift of the prolate-oblate transition in the vesicle phase diagram, which are calculated within the framework of
the spontaneous curvature model. As a consequence of the special form of the energy contribution due to the
rods, these changes cannot be accounted for by a simple rescaling of the elastic constants of the vesicle as for
solutions of spherical colloids or polymers.@S1063-651X~99!09704-4#

PACS number~s!: 82.70.2y, 68.10.Cr, 87.16.2b, 62.20.Dc
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I. INTRODUCTION

Recently, Yamanet al. @1,2# obtained the surprising resu
that the surface tensiong of a fluid of thin hard rods at a
spherical or cylindrical wall of radiusR is nonanalytical at
curvaturec51/R50. They found different expressions fo
g(c) for positive and negative curvatures. This analysis t
assumed ideal particles has been extended by Groh
Dietrich @3# by taking into account the interactions betwe
the particles. This leads to a substantial change of the cu
ture dependence at medium and high particle densities, b
small singular contribution probably still remains. In th
present work we return to the ideal limit but generalize
problem in two respects. First, we explicitly study arbitrar
shaped surfaces with locally varying curvatures. This is
pecially important because due to the mentioned singula
the curvature dependence of the surface free energy ca
have the common Helfrich form@4#. Therefore, it is not pos-
sible to derive the general expression from the special c
of spherical and cylindrical surfaces. Indeed, we find diff
ent analytical expressions depending on the signs of the l
curvatures that take on an unexpected form especially at
perbolic points. Second, we allow for a finite thickness of
rodlike particles, with the known result for spherical particl
included as a limiting case.

One might ask if and how the curvature dependent surf
free energy is experimentally accessible. This is indeed
case for surfaces that are free to adjust their curvature to
conditions provided by the surrounding liquid. Such surfa
are given by vesicles that consist of closed liquid bilay
membranes in an aqueous solution. Their shapes are ex
mentally observable by phase-contrast microscopy@5#. Theo-
retically, vesicles are commonly modeled as tw
dimensional continuum surfaces with bending elasticity.
the simplest model the elastic energy of the membrane
has the Helfrich form. Different classes of equilibriu
shapes have been determined as local energy minima~for
some especially interesting examples, see Ref.@6#!. For the
most relevant parameter ranges the corresponding phase
gram has been worked out in detail@7#.
PRE 591063-651X/99/59~5!/5606~7!/$15.00
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The presence of other particles in the solution gives rise
an additional energy contribution. Due to a change of
effective spontaneous curvature the vesicle may tend to b
toward or away from the solute particles. The effects of a
sorbed and free polymers and of spherical colloidal partic
have been reviewed by Lipowskyet al. @8#. Here we study
the corresponding problem for rodlike particles. In contr
to the other cases, here the total elastic energy including
solute effects no longer has the Helfrich form. Thus n
equilibrium shapes arise and the phase diagram is mod
in a way that cannot be reduced to a simple renormaliza
of the parameters.

II. SURFACE FREE ENERGY AT ARBITRARILY
SHAPED WALLS

We study a system of hard spherocylinders of lengthL
and diameterD in the presence of a hard wall of gener
shape whose principal radii of curvatureR1 andR2 are large
compared toL and D. The interactions between the rodlik
particles are neglected, i.e., we consider the dilute limit.
this section we calculate the surface free energy of the ro
which is then used in the second part of the paper to de
mine equilibrium shapes of vesicles immersed in the
solution.

Using density-functional theory it can easily be shown@2#
that the surface contributionVs to the grand-canonical po
tential of the fluid is given by

bVs5
rb

4pE d3r dvS 12
4pr̂~r ,v!

rb
D , ~1!

where r̂(r ,v) denotes the density of rods whose center
mass is at the pointr and whose orientation isv5(u,f),
andrb is the particle density of the bulk fluid far away from
the wall. Due to the hard wall potential,n(r ,v)
ª4pr̂(r ,v)/rb has either the value 0 or 1, depending
whether the configuration (r ,v) is forbidden by the presenc
of the surface or not. The ideal particles we assumed o
5606 ©1999 The American Physical Society
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PRE 59 5607VESICLES IN SOLUTIONS OF HARD RODS
‘‘feel’’ the wall within a layer of thickness (L1D)/2 so that
the spatial integration in Eq.~1! can be restricted to this
layer. We introduce a local coordinate system at each p
of the surface whosez axis points along the normal directio
into the rod solution, and whosex and y axes are aligned
with the principal directions. As we are only interested in t
leading terms in the curvature we approximate the posi
of the surface by

zs52
1

2S x2

R1
1

y2

R2
D , ~2!

where we introduced the convention that a curvatureci
51/Ri is positive if the surface curvesaway from the fluid.
Now Vs can be written as a surface integral over the f
energy densityvs :

Vs5E dSvs~c1 ,c2!, ~3!

with

bvs~c1 ,c2!5rbE
0

~L1D !/2
dz J~z,c1 ,c2!

3
1

4pE dv@12n~z,c1 ,c2 ,v!#. ~4!

The Jacobian

J~z,c1 ,c2!5
~z1R1!~z1R2!

R1R2
511~c11c2!z1c1c2z2

~5!

takes into account the change of the tangential area elem
dS with the normal distancez. The range of orientationsv
for which the particle intersects the surface@i.e., for which
n(z,c1 ,c2 ,v)50] for given curvaturesc1 and c2 and nor-
mal distancez can be found by straightforward geometry.

A. Infinitely thin rods

We first consider the limit of infinitely thin rods (D
50). At given azimuthal anglef around the normal direc
tion we determine the maximum allowed valuexmax for the
nt

n

e

ent

cosine of the polar angle, at which the rod just touches
surface. This is a two-dimensional problem within the pla
f5const that intersects the surface in the parabolazs

52cr2 (r is the tangential coordinate within the plane!,
with

c5c~f!5c1sin2 f1c2cos2 f. ~6!

Note thatc(f) can be positive or negative depending on t
signs ofc1 andc2 . Figure 1 shows that for positive curva
tures there are two possibilities how the thin rod can tou
the surface: tangentially forz,zc and with its end forz
.zc . It is easy to show that

FIG. 1. Geometries for the calculation of the available orien
tional space of a rod near a general surface. For positive curva
the rod touches the surface tangentially for small normal distan
of its center of mass~rod 1! and with its end at larger distances~rod
2!. For negative curvature only end contact occurs~rod 3! and the
rod cannot come closer to the surface than the distancezc ~rod 4!.
The value ofxmax @Eqs.~7! and~9!# is the cosine of the angleu at
contact.
xmax55 S 11
1

2czD
21/2

5A2cz1O~c3/2!, z,zc

2
2

cL
1A11

8z

cL2
1

4

c2L2
5

2z

L
1S L

4
2

z2

L D c1S z3

L
2

zL

4 D c21O~c3!, z.zc ,

~7!

with

zc5
1

4c
~211A11c2L2!5

cL2

8
1O~c3!. ~8!

For negative curvatures the rod cannot approach the surface closer thanzc52cL2/8, so thatxmax50 for z,zc while for z
.zc one has
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5608 PRE 59B. GROH
xmax5
2z

L
1S L

4
2

z2

L D c1S z3

L
2

zL

4 D c21O~c3! ~9!

as before. Note thatxmax is analytic atc50 only if z.zc ,
while different expressions apply forc"0 if z,zc . The sur-
face free energy density now follows by integration overf:

bvs

rb
~c1 ,c2!5

1

2pE0

2p

dfE
0

L/2

dz J~z,c1 ,c2!

3$12xmax@z,c~f!#%. ~10!

Up to terms quadratic in the curvature one obtains

bvs

rb
5

L

4
for c1 ,c2.0 ~11!

and

bvs

rb
5

L

4
2

L3

128F ~c11c2!22
4

3
c1c2G for c1 ,c2,0.

~12!

If c1.0 andc2,0 the functionc(f) changes sign at the
angle f05arctanA2c2 /c1 and thef integration must be
split accordingly. After some algebra one finds

bvs

rb
5

L

4
2

L3

192p
@3A2c1c2~c11c2!

1~3c1
212c1c213c2

2!arctanA2c2 /c1#

for c1.0,c2,0. ~13!

Of course the same formula withc1 and c2 interchanged
applies forc1,0 andc2.0. Thus depending on the signs
the principal curvatures,vs is given by Eqs.~11!, ~12!, or
~13!. Equation~12! was already derived by Yamanet al. @see
Eq. ~A9! in Ref. @2## who also showed that Eq.~11! is exact
for a convex surface to all orders in the curvature. Our n
result @Eq. ~13!# provides a continuous connection betwe
Eqs.~11! and ~12!. This is demonstrated in Fig. 2 wherevs
is plotted forc15ccosc andc25csinc as a function ofc
for fixed c. Obviously the presence of the rods favors s
faces with two negative principal curvatures. Terms linea
the curvature are absent in all cases. The quadratic term
nonanalytic if one of theci ’s changes sign, which, inter alia
precludes writing the curvature dependence of the sur
free energy in the common Helfrich form

FHel5E dSF1

2
k~c11c22C0!21k̄c1c2G , ~14!

with the bending rigiditiesk andk̄ and the spontaneous cu
vatureC0 . If one restricts oneself to equal signs ofc1 andc2
we have rigorously shown here that the Helfrich form can
applied withbk/rb52L3/64 andbk̄/rb5L3/96 for nega-
tive and, trivially, k5k̄50 for positive curvatures. How
ever, surfaces of vesicles typically exhibit regions with d
fering signs, so that a global mapping to the Helfrich form
no longer possible.
w

-
n
are

ce

e

B. Rods of finite thickness

The case of spherocylindrical particles with finite thic
nessD can be reduced to the problem forD50 discussed
above if one realizes that the surface of the spherocylin
consists of all points that have a distanceD/2 from the line
segment of lengthL, which connects the centers of the hem
spherical caps. Thus if the spherocylinder touches the sur
S this line segment touches a parallel surfaceS8 shifted by
D/2. The curvature radii ofS8 and S are simply related by
Ri85Ri1D/2, i.e., ci85ci /(11ciD/2) @9#, so that for z
.D/2,

n~z,c1 ,c2 ,D !

5n@z2D/2,c1 /~11c1D/2!,c2 /~11c2D/2!,0#. ~15!

The particles cannot approach the wall closer thanz5D/2.
This inaccessible range yields theL independent contribution

bvs
~1!

rb
5E

0

D/2

dz J~z,c1 ,c2!5
D

2
1

D2

8
~c11c2!1

D3

24
c1c2

~16!

to the free energy density. By using the fact that

J~z81D/2,c1 ,c2!5J~z8,c18 ,c28!~11c1D/2!~11c2D/2!,
~17!

one obtains for the remainingz integral from D/2 to (L
1D)/2,

vs
~2!~c1 ,c2 ,D !5S 11

c1D

2 D S 11
c2D

2 Dvs~c18 ,c28,0!.

~18!

Now the above results for infinitely thin rods can be e
ployed to give the final result

FIG. 2. Curvature dependence of the surface free energy de
vs(c1 ,c2) for c15c cosc and c25c sinc. The value ofc is kept
fixed (cL50.2) andc is varied from 0 to 2p providing a continu-
ous path through the four possible sign combinations ofc1 andc2

for which four different analytical expressions@Eqs.~11!–~13!# ap-
ply. The curve is nonanalytic atc5p/2,p,3p/2,2p. The third de-
rivative with respect toc diverges on one side of these points.
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PRE 59 5609VESICLES IN SOLUTIONS OF HARD RODS
bvs

rb
5

D

2
1

L

4
1S D2

8
1

DL

8 D ~c11c2!

1S D3

24
1

D2L

16 D c1c21D f s , ~19!

with

D f s50, c1 ,c2.0 ~20!

D f s52
L3

128F ~c11c2!22
4

3
c1c2G , c1 ,c2,0 ~21!

D f s52
L3

192pF3A2c1c2~c11c2!

1~3c1
212c1c213c2

2!arctanA2
c2

c1
G ,

c1.0,c2,0. ~22!

It is remarkable that all the additional terms that cont
powers ofD are analytic inc1 andc2 . The singular contri-
butionsD f s are exactly the same as in the limitD→0. In this
sense no qualitatively new features arise when the thickn
of the rods is taken into account. Therefore, we only cons
thin rods in the second part of this paper. The special cas
hard noninteracting spheres is also contained in the ab
analysis forL50. Only in this case the fullvs is analytic and
thus lends itself to the Helfrich expansion. Our result for t
spheres is in agreement with previous calculations@1,10#.

We remark that the crossover between rods and polym
has been analyzed to a certain extent in Ref.@2#. These au-
thors determined the surface free energy of segmented
with a small number of monomersN at spherical walls and
found that the difference between the coefficients of the q
dratic terms for positive and negative curvature becom
smaller with increasingN. One may speculate that this di
ference vanishes forN→`, so that long polymers, like har
spheres, would represent another special case for whichvs is
analytic.

III. VESICLE SHAPES IN A ROD SOLUTION

We now consider a vesicle immmersed in a solution
rodlike colloids. It is assumed that the rods are not absor
on the membrane and that their interaction can be appr
mated by the hard wall model. The bending energy of
vesicle consists of two contributions. First, the internal be
ing rigidity of the membrane, which is described in the s
called spontaneous curvature model as given by Eq.~14!
~For other possibilities see, e.g.,@5,11#!. Second, the pres
ence of the rodlike particles gives rise to the surface f
energy determined in the previous section. If the vesicle
immersed in a solution of polymers@12# or diluted spherical
colloids this second contribution will have the same anal
cal form as the first and therefore lead to a renormalization
the rigidity coefficients and the spontaneous curvature of
‘‘free’’ vesicle. Then the equilibrium shapes are those det
mined for the pure spontaneous curvature model@7# and the
addition of the solute only shifts the system to a differe
ss
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point in the phase diagram. However, in the present case
second energy contribution, due to the rods, cannot be w
ten in the Helfrich form so that new equilibrium shapes w
arise. As shown in Sec. II B a nonzero thickness of the r
can also be taken into account by using renormalized co
cients inFHel . Therefore, in the following we only use th
expressions for infinitely thin rods.

Because the energy scale associated with the bendin
gidity k is much smaller than the energies necessary
change significantly the areaA or the volumeV of the
vesicles, these quantities are regarded as fixed. Thus
equilibrium shape is determined by a minimization ofFtot
5FHel1Vs under the constraint of fixedA andV. Due to the
scale invariance ofFtot the equilibrium shape depends on
on the dimensionless parameters

v5A36p
V

A3/2
, c05C0A A

4p
, x5

rbL3

bk
. ~23!

A sphere is characterized byv51, while for any other shape
v,1. The parameterx measures the relative importance
the contributionVs due to the rods. The Gaussian curvatu
term proportional tok̄ in Eq. ~14! is constant for topologi-
cally equivalent shapes and will be omitted since we c
sider only shapes with the same topology as the sphere.
will focus on the regionv&1 and moderate values ofc0
where the equilibrium shapes of the pure spontaneous cu

FIG. 3. Aspect ratioa and bulging parametert ~see main text! of
the equilibrium shape as a function of the reduced concentratiox
of rods inside and outside the vesicle for prolates and oblates at
reduced voluminav close to the transition point (c050).
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5610 PRE 59B. GROH
ture model are axisymmetric prolates or oblates with
down symmetry, separated by a first-order transition@7#.

Rather than deriving and solving the exact Eul
Lagrange shape equations we parametrize the surface
simple two-parameter functions. In cylindrical coordinat
(r ,z,f) around the axis of symmetry we write@13#

r ~z!5aA12z2A11bz2 for prolates, ~24!

z~r !5aA12r 2A11br2 for oblates. ~25!

These shapes reduce to ellipsoids forb50, while increasing
the value ofb leads to a bulging, which finally yields non
convex shapes forb.1. The parametera is the aspect ratio
of the shape, i.e., the ratio of its diameter in the equato
plane and its length along the symmetry axis~or vice versa
for oblates!. We emphasize that the bending energy does
depend on the size of the vesicles so that the length of
axis can be arbitrarily set to unity. The corresponding ves
volumes are

Vpro5
4p

3
a2S 11

b

5D , ~26!

Vobl5
pa

2bFb211
~b11!2

2Ab
S p

2
1arcsin

b21

b11D G , ~27!

and the areas

Apro54paE
0

1

dzA~12z2!~11bz2!1a2z2~12b12bz2!2,

~28!
n

st

th
u-

y

ro

rv
g’

e

-

-
by

s

l

ot
ne
le

Aobl54pE
0

1

dr rA11a2r 2
~12b12br2!2

~12r 2!~11br2!
. ~29!

The principal curvatures are

c1
pro5r ~z!A11r 8~z!2, c2

pro52
@11r 8~z!2#3/2

r 9~z!
~30!

for prolates and

c1
obl52

rA11z8~r !2

z8~r !
, c2

obl52
@11z8~r !2#3/2

z9~r !
~31!

for oblates. All curvatures are positive forb,1. In the pro-
late casec2

pro becomes negative forz,zc , wherezc is the
positive solution of

211b2z4~2312z2!1b~126z213z4!50. ~32!

For oblates three ranges must be distinguished: forr ,r c1 ,
wherer c1 is again determined by Eq.~32!, both curvatures
are negative. Betweenr c1 and r c25A(b21)/(2b), c2

obl is
positive andc1

obl is negative, while forr .r c2 both curva-
tures are positive. The rod contribution to the elastic ene
is computed from
Vs5E dSvs~c1 ,c2!55 4pE
0

1

dz r~z!A11r 8~z!2 vs@c1
pro~z!,c2

pro~z!#, prolates

4pE
0

1

drrA11z8~r !2 vs@c1
obl~r !,c2

obl~r !#, oblates.

~33!
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The equilibrium shapes follow by a numerical minimizatio
of the total elastic energyFtot@a(b,v),b# with respect tob,
wherea(b,v) is obtained by numerical solution of the fir
equation of Eq.~23!.

If the rods are inside instead of outside the vesicle
signs of the curvaturesci have to be reversed in the comp
tation of Vs . For the case of particles onboth sides of the
membrane, vs(c1 ,c2) must be replaced byvs(c1 ,c2)
1vs(2c1 ,2c2) which, interestingly, has the form given b
Eq. ~12! for all signs ofci . Hence here the Helfrich form is
valid, as has been surmised by Yamanet al. @1#, so that for
c050 the equilibrium shape does not depend on the
concentrationx.

We first discuss the results for zero spontaneous cu
ture. If b.1 the shape can be characterized by a ‘‘bulgin
parametert5(b11)/2b1/2, which is equal to the ratio of the
maximum ofr (z)@z(r )# and its value in the equatorial plan
e

d

a-
’

@along the symmetry axis# for prolates@oblates#. In Fig. 3 the
quantitiesa and t are shown as a function ofx for a prolate
and an oblate atv values in the vicinity of the phase trans
tion. Rods outside a prolate tend to decreasea and increaset
thereby narrowing the waist of the vesicle. Similarly, an o
late develops stronger ‘‘dips’’ at the symmetry axis in ord
to increase the range and degree of negative curvature. T
results confirm our previous observation that the surface
fers to bend toward the rods. Figure 4 shows some exam
for shapes without and with rods outside and inside
vesicle. The changes ofa andt are much smaller for prolate
~0.4–1.3 % atx530) than for oblates~10–15 %!.

Identifying the most probable shape with the lowest e
ergy shape is problematic when the energy is a nonana
function of the shape that might be nonquadratic for sm
deviations from the energy minimum@14#. However, nu-
merically the functionVs@a(b,v),b# shows no traces o
nonanalyticity. In fact, the integrandvs(c1 ,c2) is singular
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PRE 59 5611VESICLES IN SOLUTIONS OF HARD RODS
only on a set of measure zero~on the curves determined b
c1c250) so that the singularity is probably removed by t
integration.

Without rods the phase transition between prolates
oblates takes place atv50.648 within our approximation
which is very close to the valuev50.651 obtained by an
exact minimization@7#. The coexisting shapes~see Fig. 4!
are both strongly nonspherical with an aspect ratioa.0.17,
which indicates a pronounced first-order character of
transition. As shown in Fig. 5 the rods shift the transition
larger v if they are outside the vesicle and to smallerv

FIG. 4. Equilibrium shapes forc050 atv50.648, which corre-
sponds to the transition point if no rods are present. Only one q
ter of the contours is drawn; the remaining parts follow by symm
try. Note that the symmetry axis is drawn horizontally for t
prolates and vertically for the oblates. Within each part of the fig
the shapes are scaled to the same volume and area. The prese
rods outside or inside the vesicle induces a modification of
shape which for the prolates is hardly visible on this scale.

FIG. 5. Phase boundary between prolates and oblates foc0

50 as a function of the dimensionless rod concentrationx outside,
inside, or on both sides of the vesicle. Particles outside favor ob
shapes, particles inside, prolate shapes. If particles are prese
both sides, their contribution to the elastic energy has the Helf
form, too, so that the equilibrium shapes and the boundary are
altered.
d

e

inside. As explained above, rods on both sides effectiv
just change the value ofk but do not influence the phas
diagram.

We now turn to the more general case of nonzero sp
taneous curvaturec0 . Negative values ofc0 favor oblate
shapes so that the transition point moves to higher volum
surface ratiosv ~Fig. 6!. It has been shown rigorously tha
the phase boundary approachesv51 atc0526/5 @15,7#. By
a series expansion of the elastic energy aroundv51 one
finds that this also holds within the present parametrizati
The presence of rods outside the vesicle shifts the trans
line to largerv. However, no shift occurs forv.0.87 be-
cause in this range both coexisting shapes are convexb
,1) so thatVs5const. Rods on both sides of the membra
give rise to an additional Helfrich-like term withbk rod
52rbL3/64 andc0,rod50. Therefore, the effective bendin
rigidity is k85k1k rod and the effective spontaneous curv
ture is

c085
c0

12x/64
. ~34!

For this reason the curve for particles on both sides diff
from the curve forx50 in Fig. 6 ~except atc050) and
reachesv51 at c0526/5(12x/64), whereas both curve
are identical if plotted as a function ofc08 instead ofc0 ~Fig.
7!. We note thatk8 becomes negative forx.64. In this case
the present analysis breaks down and higher order term
the curvature must be taken into account. If the rods
restricted to the inside of the vesicle the same effective H
frich form applies as long as only convex shapes are con
ered. This explains why the corresponding phase bounda
equal to that for rods on both sides at largev. However, for
smallerv, shapes with differing signs of the curvatures occ
that cannot be accounted for by a simple rescaling of
Helfrich coefficients and that shift the transition line in Fig.
to lower v compared to the pure Helfrich case.

IV. DISCUSSION

In summary, we have shown that if rodlike particles a
present on the outer or inner side of a vesicle its equilibri

r-
-

e
e of
e

te
on
h
ot

FIG. 6. Phase diagram in thev,c0 plane for vesicles in the
absence and presence of rods. The lines approach the maxi
value v51 at c0526/5 for x50 or rods outside, but atc0

526/5(12x/64) for rods inside or on both sides~see main text!.
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5612 PRE 59B. GROH
shape changes. Because the curvature dependence of th
face free energy of the solutes cannot be written in the H
frich form their effect cannot be described by a simple
scaling of the bending rigidity coefficients. We have quan
tatively computed the shape changes and the shift of
prolate-oblate transition line in the phase diagram.

In order to decide whether these effects are large eno
to be observable in experiments an estimate for the qua
x5rbL3/bk is needed. The bending rigidity is typically o
the order of 10219 J @5#. If the rod densityrb is too large the
rod-rod interaction becomes important, which might scre
the interesting effects@3#. Since these interactions scale wi
the second virial coefficientB2;DL2, a useful dimension-
less measure for their strength isrb* 5rbDL2. So even ifrb*
must be limited to a small number, 0.1 say,x can in principle
be made arbitrarily large by choosing large enough asp
ratios L/D. In practice, however, one would needL/D

FIG. 7. Same phase diagram as in Fig. 6 but plotted in term
the effective spontaneous curvaturec08 @Eq. ~34!# for rods inside and
on both sides of the vesicle. The curve for the latter case coinc
with that for the free vesicle (x50) in this representation.
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;O(103) to obtainx;O(10). This is much higher than fo
the ‘‘classical’’ rodlike colloidal particles like the tobacc
mosaic virus@16# but may be achievable with microtubule
for which D525 nm andL can be tens of micrometers
Rather large vesicles would have to be used so that the
vature radii are still large compared toL, which justifies the
neglection of higher order terms in the curvature.

Microtubules and many other mesoscopic rodlike p
ticles are usually polydisperse. Thus a useful extension of
present work would be the inclusion of polydispersity, whi
poses no fundamental technical problems as long as the
terparticle interactions can still be neglected. A generali
tion to soft particle-wall interactions seems to be more di
cult as no simple analytical expressions for more realis
potentials exist.

Finally we mention that contrary to what is claimed
Ref. @1# the corresponding problem for disks instead of ro
is not completely equivalent. It is easy to convince ones
with a coin and a cup that there are configurations wher
disk touches the inside of a cylinder at two isolated poi
whose distance is smaller than the disk diameter. The or
tational constraints due to these configurations obviou
cannot be described by replacing the disk with an equiva
rod.
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