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Vesicles in solutions of hard rods
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The surface free energy of ideal hard rods near curved hard surfaces is determined to second order in
curvature for surfaces of general shapes. In accordance with previous results for spherical and cylindrical
surfaces it is found that this quantity is nonanalytical when one of the principal curvatures changes signs. This
prohibits writing it in the common Helfrich form. It is shown that the nonanalytical terms are the same for any
aspect ratio of the rods. These results are used to find the equilibrium shape of vesicles immersed in solutions
of rodlike (colloidal) particles. The presence of the particles induces a change in the equilibrium shape and a
shift of the prolate-oblate transition in the vesicle phase diagram, which are calculated within the framework of
the spontaneous curvature model. As a consequence of the special form of the energy contribution due to the
rods, these changes cannot be accounted for by a simple rescaling of the elastic constants of the vesicle as for
solutions of spherical colloids or polymef$1063-651X99)09704-4

PACS numbes): 82.70-y, 68.10.Cr, 87.16-b, 62.20.Dc

I. INTRODUCTION The presence of other particles in the solution gives rise to
an additional energy contribution. Due to a change of the
Recently, Yamamt al.[1,2] obtained the surprising result effective spontaneous curvature the vesicle may tend to bend
that the surface tensiop of a fluid of thin hard rods at a toward or away from the solute particles. The effects of ab-
spherical or cylindrical wall of radiuR is nonanalytical at sorbed and free polymers and of spherical colloidal particles
curvaturec=1/R=0. They found different expressions for have been reviewed by Lipowslet al. [8]. Here we study
y(c) for positive and negative curvatures. This analysis thathe corresponding problem for rodlike particles. In contrast
assumed ideal particles has been extended by Groh aré@ the other cases, here the total elastic energy including the
Dietrich [3] by taking into account the interactions betweensolute effects no longer has the Helfrich form. Thus new
the particles. This leads to a substantial change of the curv&quilibrium shapes arise and the phase diagram is modified
ture dependence at medium and high particle densities, butifi @ way that cannot be reduced to a simple renormalization
small singular contribution probably still remains. In the Of the parameters.
present work we return to the ideal limit but generalize the
problem in two respects. First, we explicitly study arbitrarily Il. SURFACE FREE ENERGY AT ARBITRARILY
shaped surfaces with locally varying curvatures. This is es- SHAPED WALLS
pecially important because due to the mentioned singularity .
the curvature dependence of the surface free energy cannot We study a system of hard spherocylinders of lenigth
have the common Helfrich forf#]. Therefore, it is not pos- and diameteD in the presence of a hard wall of general
sible to derive the general expression from the special cas&fiape whose principal radii of curvatuRg andR; are large
of spherical and cylindrical surfaces. Indeed, we find differ-compared td. andD. The interactions between the rodlike
ent ana|ytica| expressions depending on the Signs of the |0C§|articles are neglected, i.e., we consider the dilute limit. In
curvatures that take on an unexpected form especially at hyhis section we calculate the surface free energy of the rods,
perbolic points. Second, we allow for a finite thickness of thewhich is then used in the second part of the paper to deter-
rodlike particles, with the known result for spherical particlesmine equilibrium shapes of vesicles immersed in the rod
included as a limiting case. solution.
One might ask if and how the curvature dependent surface Using density-functional theory it can easily be shd&h
free energy is experimentally accessible. This is indeed théhat the surface contributiofs to the grand-canonical po-
case for surfaces that are free to adjust their curvature to tH€ntial of the fluid is given by
conditions provided by the surrounding liquid. Such surfaces
are given by vesicles that consist of closed liquid bilayer Pb 5
membranes in an aqueous solution. Their shapes are experi- ﬁQs:E drdew
mentally observable by phase-contrast microsd&pyTheo-
retically, vesicles are commonly modeled as two- - )
dimensional continuum surfaces with bending elasticity. InWherep(r,») denotes the density of rods whose center of
the simplest model the elastic energy of the membrane judP@ss is at the point and whose orientation i&=(6,¢),
has the Helfrich form. Different classes of equilibrium @ndpy is the particle density of the bulk fluid far away from
shapes have been determined as local energy mitiora the wall. Due to the hard wall potentialn(r,w)

(1_4wp(r,w))’ @

Pb

some especially interesting examples, see R&j. For the :=4mp(r,w)/py has either the value 0 or 1, depending on
most relevant parameter ranges the corresponding phase dishether the configuratiorr (w) is forbidden by the presence
gram has been worked out in detgfl]. of the surface or not. The ideal particles we assumed only
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“feel” the wall within a layer of thicknessI( +D)/2 so that

the spatial integration in Eql) can be restricted to this

layer. We introduce a local coordinate system at each point

of the surface whoseaxis points along the normal direction 3

1
into the rod solution, and whose andy axes are aligned
with the principal directions. As we are only interested in the 0 \<9
leading terms in the curvature we approximate the position
of the surface by

y2
R ?

2
where we introduced the convention that a curvatore
=1/R; is positive if the surface curveswvayfrom the fluid. 4
Now Qg can be written as a surface integral over the free 2
energy densitywg: 2 \49
Qs:f dsws(clic2)! (3)

with

FIG. 1. Geometries for the calculation of the available orienta-
(L+D)/2 tional space of a rod near a general surface. For positive curvature
ﬂws(cl,02)=pbf dz Jz.cq,Cy) the rod touches the surface tangentially for small normal distances
0 of its center of mas&od 1) and with its end at larger distanc@sd
1 2). For negative curvature only end contact ocauosl 3) and the
x_f dw[1—n(z,c1,Cp,w)]. (4) rod cannot come closer to the surface than the distapéeod 4).
4m The value ofx,ay [EQs.(7) and(9)] is the cosine of the angle at

. contact.
The Jacobian

(z+R)(z+Ry)
RiR,

cosine of the polar angle, at which the rod just touches the
surface. This is a two-dimensional problem within the plane
(5 ¢=const that intersects the surface in the parabmla

. ) =—cp® (p is the tangential coordinate within the plane
takes into account the change of the tangential area elemepk,

dS with the normal distance. The range of orientations

for which the particle intersects the surfdée., for which c=c(¢)=c;Sirf ¢+ c,coe o. (6)
n(z,c,,c,,w)=0] for given curvaturex,; andc, and nor-

mal distancez can be found by straightforward geometry.

J(z,¢1,C,)= =1+ (Cy+Cy)Z+CqCpZ2

Note thatc(¢) can be positive or negative depending on the
A. Infinitely thin rods signs ofc, andc,. Figure 1 shows that for positive curva-
We first consider the limit of infinitely thin rodsY  tures there are two possibilities how the thin rod can touch
=0). At given azimuthal angle> around the normal direc- the surface: tangentially for<z. and with its end forz
tion we determine the maximum allowed valgg,, for the  >z;. It is easy to show that

1 —-1/2
1+ E) =./2cz+ O(Cslz), z<Z

Xmax= 7
max 2, 1+82+4_22+L 22+23 21 oo - 0
oL iz Tz T Ha /et T e roe), 2z,
with
1 cL?
Ze= 7 (— 1+ V1+c%L%) = = +0(c). )

For negative curvatures the rod cannot approach the surface closer tharcL?/8, so thatx,,.,=0 for z<z. while for z
>z. one has
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27 L 22 0.25
T I P 3 :
Xmax L+(4 3 c+ T cc+0(c®) (9
. . . 0.2499
as before. Note that,,,, is analytic atc=0 only if z>z_, -~
while different expressions apply fes0 if z<z.. The sur- &
face free energy density now follows by integration oyer T 02498
8(0
[<a X
Bws 1 fz” L2 0.2497
C1,C0)==—| d dz Jzcq,cC '
(ene)=5| Tde | dz Jzeic)
0.2496
X{l—XmaiZ,C(qﬁ)]}. (10)
L . 0 /2 T 3n/2 2n
Up to terms quadratic in the curvature one obtains
v
Bos = E for ¢;,c,>0 (11) FIG. 2. Curvature dependence of the surface free energy density
Pb 4 wg(Cq,Cy) for c;=c cosy andc,=c siny. The value ofc is kept
fixed (cL=0.2) andy is varied from 0 to Zr providing a continu-
and ous path through the four possible sign combinations,oéndc,

3 for which four different analytical expressiofggs.(11)—(13)] ap-
% _ E_ il PPSENPREY 28 ‘_1 f <0 ply. The curve is nonanalytic ak=m/2,m,3m/2,27. The third de-
Pb 4 12 (C1C2) 3 €1C2 or  €1,C=0 rivative with respect tay diverges on one side of these points.

12
B. Rods of finite thickness
If c;>0 andc,<0 the functionc(¢) changes sign at the
angle ¢o=arctan/—c,/c,; and the¢ integration must be

split accordingly. After some algebra one finds

The case of spherocylindrical particles with finite thick-
nessD can be reduced to the problem fBr=0 discussed
above if one realizes that the surface of the spherocylinder

Bwg L L3 consists of all points that have a distari2€ from the line
®= i 19—2[3 V—C1C5(C1+Cy) segment of length, which connects the centers of the hemi-
Po ™ spherical caps. Thus if the spherocylinder touches the surface
+(3c2+2¢.c.+3c2)arctan/—c. /o, Sthis line segment touches a parallel surf&eshifted by
(3ci e 2 2/C] D/2. The curvature radii o8’ and S are simply related by
for ¢,;>0,,<0. (13 R/=R+D/2, ie., ¢/=c;/(1+c;D/2) [9], so that forz
>DJ/2,

Of course the same formula witty and c, interchanged

applies forc; <0 andc,>0. Thus depending on the signs of  n(z,¢;,C;,,D)
the principal curvaturesy, is given by Eqgs(11), (12), or
(13). Equation(12) was already derived by Yamant al.[see =n[z—D/2,,/(1+¢,D/2),c,/(1+¢,D/2),0]. (15)
Eqg. (A9) in Ref.[2]] who also showed that E@l1) is exact )

for a convex surface to all orders in the curvature. Our new! he particles cannot approach the wall closer tharD/2.
result [Eq (13)] provides a continuous connection betweenThiS inaccessible range erIdS théndependent contribution
Egs.(11) and(12). This is demonstrated in Fig. 2 whesg,

is plotted forc,=ccosy andc,=csiny as a function ofy B
for fixed c. Obviously the presence of the rods favors sur- P
faces with two negative principal curvatures. Terms linear in b
the curvature are absent in all cases. The quadratic terms are
nonanalytic if one of the;’s changes sign, which, inter alia,
precludes writing the curvature dependence of the surfa
free energy in the common Helfrich form

D/2 D D2 D3
=f0 dz J(z,cl,cz)=5+ ?(cl+cz)+ zclcz
(16)

o the free energy density. By using the fact that

J(z’+D/2¢cq,c,)=J3(2',c1,c5)(1+c,D/2)(1+¢,D/2),
FHeIZJ d EK(C1+CZ_CO) +KC:|_C2 y (14)
one obtains for the remaining integral from D/2 to (L
with the bending rigiditiesc and « and the spontaneous cur- +D)/2,
vatureC,. If one restricts oneself to equal signsagfandc,
we have rigorously shown here that the Helfrich form can be .,
applied with 8«/p,=—L3%/64 andB«/p,=L3/96 for nega- 1+ =) 1+ 5] @s(€1.€3,0).
tive and, trivially, k=x=0 for positive curvatures. How- (18
ever, surfaces of vesicles typically exhibit regions with dif-
fering signs, so that a global mapping to the Helfrich form isNow the above results for infinitely thin rods can be em-
no longer possible. ployed to give the final result

c.D c,D

0?(cy,c,,D)=
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Bws D+L+ D2+DL ey T T
=y =4 —|eite) o b—
e 23T\ E T8 (cit+cy) 0.2
D3 D2 0.18 ]
+| =+ ——=|cCc+ Afy, v
24 16 %2 s ( ) “““ -
< 016 P
with 044 b
Afs=0, €1,6;>0 (20 o2l T
L3 , 4 S
Afg=— 54 (C1+Cy)°— 5C1Ca|, €1,C,<0 (21 :
12 3 0 5 10 15 20 25 30 35 40 45 50
L3 X
AfS:_ 192 {3\ _Clcz(C1+C2)
d 2.8 — v=0.68, prolate, outside
Cy o6 1 v=0.63, oblate, outside |
+(3c2+2¢,C,+ 3c3)arcta it --- v=0.68, prolate, inside e
1 24 1 __ y=0.63, oblate, inside
c1>0,c,<0. (22 -
2 [
It is remarkable that all the additional terms that contain 181 T
powers ofD are analytic inc; andc,. The singular contri- T N
butionsAf are exactly the same as in the lifbit- 0. In this ' T
sense no qualitatively new features arise when the thicknes 14 e ]

of the rods is taken into account. Therefore, we only consider
thin rods in the second part of this paper. The special case o
hard noninteracting spheres is also contained in the abovc X
analysis for. = 0. Only in this case the fulbg is analytic and
thus Ienc!s [tself to the Helf.”Ch expansmn. Our .result for thethe equilibrium shape as a function of the reduced concentration
spheres is in agreement with previous calculatidn0]. of rods inside and outside the vesicle for prolates and oblates at two
We remark that the crossover between rods and polymers,j,,ced volumina close to the transition pointg=0).
has been analyzed to a certain extent in R2f. These au-

th.ors determined the surface free energy of segmented ro%im in the phase diagram. However, in the present case the
with a small number of monomefs at spherical walls and  second energy contribution, due to the rods, cannot be writ-
found that the difference between the coefficients of the quagen in the Helfrich form so that new equilibrium shapes will
dratic terms for positive and negative curvature becomegyise. As shown in Sec. Il B a nonzero thickness of the rods
smaller with increasingN. One may speculate that this dif- can also be taken into account by using renormalized coeffi-
ference vanishes fdi—c, so that long polymers, like hard ¢ients inFy,,,. Therefore, in the following we only use the
sphergs, would represent another special case for vhich expressions for infinitely thin rods.
analytic. Because the energy scale associated with the bending ri-
gidity « is much smaller than the energies necessary to
Ill. VESICLE SHAPES IN A ROD SOLUTION change significantly the areA or the volumeV of the

We now consider a vesicle immmersed in a solution c)fvesicles, these quantities are regarded as fixed. Thus the
W ; vesicie | ! ytl quilibrium shape is determined by a minimization Faf,

e o acu e o oot Py, Lnder he consrant of [ and\ Do e
. PRIOXK ale invariance oF,,; the equilibrium shape depends only
mated by the hard wall model. The bending energy of the . X
. . o . ) on the dimensionless parameters
vesicle consists of two contributions. First, the internal bend-
ing rigidity of the membrane, which is described in the so- 3
lled spont t del as given by (E N A pol
called spontaneous curvature model as given y (E4) v=\36m—>, Co=Co o = (23
(For other possibilities see, e.45,11]). Second, the pres- A ™ Bx
ence of the rodlike particles gives rise to the surface free . ) )
energy determined in the previous section. If the vesicle i€t SPhere is characterized by=1, while for any other shape,
immersed in a solution of polymef42] or diluted spherical v<1. The parametex measures the relative importance of
colloids this second contribution will have the same analyti-the contribution()¢ due to the rods. The Gaussian curvature
cal form as the first and therefore lead to a renormalization oferm proportional tox in Eq. (14) is constant for topologi-
the rigidity coefficients and the spontaneous curvature of theally equivalent shapes and will be omitted since we con-
“free” vesicle. Then the equilibrium shapes are those detersider only shapes with the same topology as the sphere. We
mined for the pure spontaneous curvature m¢@debnd the  will focus on the regionv=<1 and moderate values af,

addition of the solute only shifts the system to a differentwhere the equilibrium shapes of the pure spontaneous curva-

5 10 15 20 25 30 35 40 45 50

FIG. 3. Aspect rati@ and bulging parametérsee main tejtof
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ture model are axisymmetric prolates or oblates with up- (1—b+2br?)2

down symmetry, separated by a first-order transifioh Agp=4m f dr r \/ 1+a%r>———— (29
Rather than deriving and solving the exact Euler- —rz)(1+ br?)’

Lagrange shape equations we parametrize the surfaces by

simple two-parameter functions. In cylindrical coordinates

(r,z,¢) around the axis of symmetry we wrifé3] The principal curvatures are

r(z)=ay1—-z°y1+bz* for prolates, (24) [1+1'(2)2]%2
O=r(2)V1+r' (2% c§°=———" (30
z(r)=ay1-r?\1+br? for oblates. (25) r'(z)

These shapes reduce to ellipsoids tber 0, while increasing

the value ofb leads to a bulging, which finally yields non- for prolates and

convex shapes fdo>1. The parametea is the aspect ratio

of the shape, i.e., the ratio of its diameter in the equatorial 3 V2932
plane and its length along the symmetry afos vice versa c‘fb'= T 1+2'(r) , CgbI: _ [1+2'(n?]” (31)
for oblates. We emphasize that the bending energy does not zZ'(r) Z'(r)

depend on the size of the vesicles so that the length of one

axis can be arbitrarily set to unity. The corresponding vesicle
volumes are for oblates. All curvatures are positive for<1. In the pro-

late casecb’® becomes negative far<z., wherez is the
Am b positive solutlon of
Vpro ?a 1+§ , (26)
—1+b%z%(—3+22%)+b(1-62°+3z*)=0. (32
Lol (b+1)? + , ( ) +b( ) (32)
b= 5p b arcsw;)— (27 -

For oblates three ranges must be distinguishedr for, ,

and the areas wherer, is again determined by E@32), both curvatures

are negative. Between,; andr = +(b—1)/(2b), c5? is

1 obl : R
Aoro= 47raf dzJ(1-22(11 b2 +a2%(1—b+ 2b2)2, positive andc?” is negative, wh|_Ie f_orr>rc2 both curva-
tures are positive. The rod contribution to the elastic energy
(28  is computed from

47-rj dz r(z)y1+r'(2)? wc)(2),c5°(z)], prolates
Q= f dSwg(cy,Cy)= (33

47'rj drrV1+2'(r)2 e cP(r),cSP(r)1, oblates.

The equilibrium shapes follow by a numerical minimization [along the symmetry axjdor prolateqoblateg. In Fig. 3 the
of the total elastic energ¥,.[a(b,v),b] with respect tcb,  quantitiesa andt are shown as a function offor a prolate
wherea(b,v) is obtained by numerical solution of the first and an oblate at values in the vicinity of the phase transi-
equation of Eq(23). tion. Rods outside a prolate tend to decreas@d increase

If the rods are inside instead of outside the vesicle thdN€reby narrowing the waist of the vesicle. Similarly, an ob-
signs of the curvatures; have to be reversed in the compu- ate develops stronger “dips” at the symmetry axis in order

tation of 5. For the case of particles doth sides of the to increase Fhe range and degree of negative curvature. These
results confirm our previous observation that the surface pre-
membrane, w(c1,C,) must be replaced bywg(cq,C5)

SO ) : fers to bend toward the rods. Figure 4 shows some examples
+ wg(—Cq,— Cy) Which, interestingly, has the form given by

. X -7 for shapes without and with rods outside and inside the
Eq. (12) for all signs ofc; . Hence here the Helfrich form is yeqjcle. The changes afandt are much smaller for prolates

valid, as has been surmised by Yametral. [1], so that for 9 4_1 3 o4 a=30) than for oblate$10—15 %.
=0 the equilibrium shape does not depend on the rod |gentifying the most probable shape with the lowest en-
concentratiorx. ergy shape is problematic when the energy is a nonanalytic
We first discuss the results for zero spontaneous curvgunction of the shape that might be nonquadratic for small
ture. Ifb>1 the shape can be characterized by a “bulging” deviations from the energy minimuifi4]. However, nu-
parametet = (b+ 1)/202 which is equal to the ratio of the merically the functionQJa(b,v),b] shows no traces of
maximum ofr (z)[ z(r)] and its value in the equatorial plane nonanalyticity. In fact, the integran@dg(c,,c,) is singular
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prolate
0.3 05 ._ — x=0
‘\;\Q\ -------- x=30, outside
0.2 - prolates - x=30, inside
= 0t —— x=30, both sides
0.1 .
[
0 05 1
0 0.2 0.4 0.6 0.8 1 oblates
z
oblate 1
0.3 A,
0.2 _________:.____-_;;.::-" — = 05 055 086 065 0.7 0.75 0.8 0.85 09 095 1
N 04 - x=30, outside \
--- x=30, inside . . . .
0 FIG. 6. Phase diagram in the,c, plane for vesicles in the
0 0.2 0.4 06 08 1 absence and presence of rods. The lines approach the maximum
value v=1 at co=—6/5 for x=0 or rods outside, but atg
r = —6/5(1—x/64) for rods inside or on both sidésee main texjt

FIG. 4. Equilibrium shapes far,=0 atv =0.648, which corre- . . .
sponds to the transition point if no rods are present. Only one quaiNSide. As explained above, rods on both sides effectively
ter of the contours is drawn; the remaining parts follow by symmeJust change the value ot but do not influence the phase
try. Note that the symmetry axis is drawn horizontally for the diagram.
prolates and vertically for the oblates. Within each part of the figure \We now turn to the more general case of nonzero spon-
the shapes are scaled to the same volume and area. The presencéasfeous curvature,. Negative values ot, favor oblate
rods outside or inside the vesicle induces a modification of theshapes so that the transition point moves to higher volume to
shape which for the prolates is hardly visible on this scale. surface ratiow (Fig. 6). It has been shown rigorously that

the phase boundary approachkesl atcy,=—6/5[15,7]. By
only on a set of measure zefon the curves determined by @ Series expansion of the elastic energy arourdl one
c,¢,=0) so that the singularity is probably removed by thefinds that this also holds within the present parametrization.
integration. The presence of rods outside the vesicle shifts the transition

Without rods the phase transition between prolates andne to largerv. However, no shift occurs fos>0.87 be-
oblates takes place at=0.648 within our approximation, Cause in this range both coexisting shapes are conbex (
which is very close to the value=0.651 obtained by an <1) S0 thal}s=const. Rods on both sides of the membrane
exact minimization[7]. The coexisting shapesee Fig. 4  give rise to an additional Helfrich-like term witBxoq
are both strongly nonspherical with an aspect ratie0.17, = — pul*/64 andcg,oq=0. Therefore, the effective bending
which indicates a pronounced first-order character of thdigidity is «'=k+ ko and the effective spontaneous curva-
transition. As shown in Fig. 5 the rods shift the transition toture Is
larger v if they are outside the vesicle and to smalter c

0
C1-x/64"

!

Co (34)

0.66 prolate

For this reason the curve for particles on both sides differs
from the curve forx=0 in Fig. 6 (except atc,=0) and
reachesv =1 at co=—6/5(1—x/64), whereas both curves
are identical if plotted as a function of, instead ofc, (Fig.
7). We note thak’ becomes negative for>64. In this case
oblate the present analysis breaks down and higher order terms in
— outside the curvature must be taken into account. If the rods are
........ inside restricted to the inside of the vesicle the same effective Hel-
- both sides frich form applies as long as only convex shapes are consid-
) ered. This explains why the corresponding phase boundary is
0 5 10 15 20 25 30 35 40 45 50 equal to that for rods on both sides at laiggeHowever, for
x=pL% smallerv, shapes with differing signs of the curvatures occur
=pL7/(Bx) . :
that cannot be accounted for by a simple rescaling of the
FIG. 5. Phase boundary between prolates and oblates,for Helfrich coefficients and that shift the transition line in Fig. 7
=0 as a function of the dimensionless rod concentrationtside, to lowerv compared to the pure Helfrich case.
inside, or on both sides of the vesicle. Particles outside favor oblate
shapes, particles inside, prolate shapes. If particles are present on IV. DISCUSSION
both sides, their contribution to the elastic energy has the Helfrich
form, too, so that the equilibrium shapes and the boundary are not In summary, we have shown that if rodlike particles are
altered. present on the outer or inner side of a vesicle its equilibrium

0.64

0.62
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~0(10%) to obtainx~0O(10). This is much higher than for

0.5 — x0 , the “classical” rodlike colloidal particles like the tobacco
+ x=30, outside mosaic virus[16] but may be achievable with microtubules
" %=30, inside for which D=25 nm andL can be tens of micrometers.
- 0 Rather large vesicles would have to be used so that the cur-
< prolates vature radii are still large compared I which justifies the
S o5 neglection of higher order terms in the curvature.

oblates Microtubules and many other mesoscopic rodlike par-

ticles are usually polydisperse. Thus a useful extension of the
present work would be the inclusion of polydispersity, which
poses no fundamental technical problems as long as the in-
terparticle interactions can still be neglected. A generaliza-
tion to soft particle-wall interactions seems to be more diffi-
v cult as no simple analytical expressions for more realistic
potentials exist.

-1

0.5 055 06 065 0.7 0.75 0.8 0.85 0.9 095 1

FIG. 7. Same phase diagram as in Fig. 6 but plotted in terms o Finall tion that t ¢ hat is claimed i
the effective spontaneous curvategg[Eq. (34)] for rods inside and fmf );]W6 men Iond. a COSI raryf Od\.N ka Isc a:jm? IQ
on both sides of the vesicle. The curve for the latter case coincide's?e [1] the corresponding problem for disks instead of rods

with that for the free vesiclext=0) in this representation. is not completely equivalent. It is easy to convince oneself

with a coin and a cup that there are configurations where a

disk touches the inside of a cylinder at two isolated points

shape changes. Because the curvature dependence of the Syfpse distance is smaller than the disk diameter. The orien-
face free energy of the solutes cannot be written in the Helgational constraints due to these configurations obviously

frich form their effect cannot be described by a simple re-cannot be described by replacing the disk with an equivalent
scaling of the bending rigidity coefficients. We have quanti-ygq.

tatively computed the shape changes and the shift of the
prolate-oblate transition line in the phase diagram.

In order to decide whether these effects are large enough
to be observable in experiments an estimate for the quantity The author thanks U. Seifert, A. Hanke, and S. Dietrich
x=ppL3/ Bk is needed. The bending rigidity is typically of for helpful discussions, and B. Mulder and M. Bates for a
the order of 10%° J[5]. If the rod densityp,, is too large the  critical reading of the manuscript. This work is part of the
rod-rod interaction becomes important, which might screemesearch program of the Stichting voor Fundamenteel Onder-
the interesting effectg3]. Since these interactions scale with zoek der Materig€Foundation for Fundamental Research on
the second virial coefficienB,~DL?, a useful dimension- Matter and was made possible by financial support from the
less measure for their strengthg§=p,DL2. So even ifp; Nederlandse Organisatie voor Wetenschappelijk Onderzoek
must be limited to a small number, 0.1 saan in principle  (Netherlands Organization for the Advancement of Re-
be made arbitrarily large by choosing large enough aspeaearch. The author acknowledges the financial support of
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